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ABSTRACT 

In the study of he.iting problems of missiles it   is fre- 

quently   necessary  to   obtain  the   surface   integral of the   heat 

transfer.     This is usually obtained by a numerical integration 

of  the   heat  transfer   rate   distribution.      The   purpose   of this 

note   is to show that,    for laminar   heat transfer to   symmetric 

bodies   at   zero   angle   of   attack,   this integration   can   be   done 

analytically,    if   only   a   few   reasonable   approximations    are 

made.      The   result   is expressible   entirely in terms   of  quan- 

tities   which  also   enter   the heat transfer rate distribution ex- 

pression,   so performing the surface integral becomes a very 

simple matter of algebraic combination of known quantities. 
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A  NOTE ON THE SURFACE INTEGRAL OF IAMINAR HEAT 

FLUX TO SYMMETRIC  BODIES AT ZERO INCIDENCE 

ID the study of heating problems of missiles it is frequently necessary 
to obtain the  surface  integral  of the heat  transfer.     This  is  usually obtained 
by a numerical integration of the heat transfer rate distribution.    The pur- 
pose of this  note  is to show that,   for Laminar heat transfer to symmetric 
bodies .it zero angle of attack)   tins integration can be done analytically,   if 
only a few   reasonable approximations are made.    The  result is expressible 
entirely in terms  of quantities which also enter the heat transfer  rate dis- 
tribution expression,   so performing the surface integral becomes a very 
simple matter of algebraic < ombination of known quantities. 

The "local similarity" theory of Laminar heal transfer to bodies at 
zero angle oi attack gives the heat transfer rate as' 

r J /)      (i     u      II 
w      w      e       e 

^71 
T|W 

(1 

Here   r   is the body radius in the < ross-section plane,   u,  and  H„ velocity 
and  stagnation  enthalpy at  the  edge of the   boundary  layer,   pw,    gw    and   0'w 
the detisity,  viscosity and Prandtl number at the wall,   ^mv  the non-dimen- 
sional enthalpy gradient at  the wall,   and £   a  transformed coordinate   related 
to the coordinate   x   parallel  to the  body surface  by 

f    « f -' o 
l>      M       i       r 

w    w      e 
dx. (2) 

The index  j   is zero for two-dimensional and unity for axisymmetric flow. 

To integrate   q   over the body surface up to station XJ we multiply by 
the element of surface .\n-.i dA - 1( -n r)3 dx and integrate' from x = 0 to 
x - x^,   obtaining 

a       /     '  qdA = 2(ir)J / 
•t o J o 
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b  is this Integral which we will approximate 



First note tint II    is ,i constant.    Second,   note from Eq.  (£) that the 
numerator of the term in the square brackets is  d f /<l\ so we can write 

Qi= l f'>JHe   f    l     LsLS.   d(N/71 
Jo a (4) 

limensional 
1 

The Prandtl number mav be taken to I»- a  constant,  o.     The non-.. 
enthalpy gradient g — w   does nol  vary much around the  body either   ,   since it 
has a weak dependence on pressure gradient and a  roughly square  root de- 
pendence  on   /)/.(   ratio.      In   tact,    Ires"  took   it  to  be a   constant at the   zero 
pressure gradient,   constant pn,  value in his heal transfer theory.      Thus, a 
reasonable approximation is to take a suitable avera 
may then integrate  Eq.   (1) to obtain 

ge value,   say g^, We 

Qi-2(*)JHe g T1wo\T
2T^jA- (5) 

This formula expresses the surface integral of the heal transfer rate in 
terms of the transformed body coordinate f   -it the end station of the integra< 
tion interval x^.    However,   f   can be expressed in terms of q from Eq.   (\), 
so Qj can be  relati d to M(XJ) by 

Q. = 2{irr.)JH2     (We;)     [%wo] 
• 

more useful  i :• blunl  bodies is Lng the 
■ ■. ■ ippropriate limit ..   (1): 
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if the present note, in- 

»roportional  to I al  the end point of the integration 
Since the total heat input ti dy up to statii 
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Further simplification oi  Eq.   (K) is obtained if the body can be taken 
tu have a cool wall .it which the perfect gas Law La applicable.    Then we have 

1    • l' \> i M    ■ i T      \ W1     W1                     i' 1 / Wl/ w l    1 

/' P I M       / T       I ws     ws 'es \ WS/ ws / 
(9) 

where p is the pressure in the boundary Layer, Finally, ii the wall can be 
taken as constant temperature, the factor Ln parenthesis in Eq. (9) is unity 
.111ci we have the  simple  result 

l 
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As ,in example,   for a hemispherical  nose of radius        al hypersonic 
speeds,   u(.  is practically a  Linear function oi x = R0 ,  and        o r = K sin 0 . 
The area and velocity fa< tor is then 

A.n.    r. 
I    ei      l 

(du   /dx) 
-  R   6   sin 0 (1 

In the constant,   Low temperature wall case,   Ref.   -,   Eq.   (15) or Ref.   3, 
Eq.   (7) (with the correction of a square  root Ln the denominator) gives 

in i) 

!Vs [F. (0)  l  (.K, (0)]  X/l 

I   -   (3  sin" (), (12) 

F     {(>) 9C  -  9  sin 20   l   sin" 0, 

V , (0)       -   J   I       02 - 0 sin 20 (1+2 (sin2 0)/3)  I  sin" 0(1   I  (sin20)/3) I. 

Thus,   the integrated heat transfer becomes,   from Eqs.   (l(i)-(l^), 

/"> r 
3_ dA       ,T  R2        Fj  (D.)   I   ß F2 (0 )      '   2 , (13) 

o   q8 
L J 

a  result which agrees with a direct Integration of Eq.   (1^) 
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If a direct Integral formulation is desired,   iris trad oi an expression 
in terms of q,   we tan  restore   (   In place oJ q  In Eq.   (K) by means of Eqs. 
(1) and (7): 

Pt-^r-1 / '   w   ' w 
u    r 

e 
2j 

P P (du,, / <\x] W S        w s < s 
-dx 

1/2 

.(14) 

Further simplification  for a  constant,   low  temperature w.dl   leads  to the 
formula analogous  to Eq.   (1"): 

r^w \U 
(w)J 

Jo P 

u    r • 

(du(./  cK)s 
dx 

1/2 

.(15) 

If the hemispherical nose example of Eqs.   (11) and (1Z) is used in 
Eq.   (15),   the integration can De performed,   and the  result agrees,  of 
course ,   with  Eq.   (15). 

The advantage of Eqs,   (8) and (10),   over Eqs.   (11) and (h),   is that 
the integrals in the hitter are directly related to the heat transfer rate dis- 
tribution,  and so have already been calculated if that distribution is known. 
In  this  case  the  surface   integral  can  be   found  from   Eqs.   (M) and   (10)  with  ]w 
further integration.    II,   however,   one desires to find the integrated heat in- 
put  without  first finding  the  heat   flux  distribution,    Eqs.    (11) and  (15) are  the 
useful   ones. 

If the   integral   of q  itself  is   desired,    the   value   of qfl   should  be   found 
from the formulas given in Ref.    1. 
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